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Abstract—A two-dimensional steady-state laser melting problem is numerically simulated. A vorticity—
stream function formulation is used to solve momentum equations and a method of selecting the optimum
relaxation parameter is suggested. Steady-state finite-difference equations are solved by an alternative
direction implicit (ADI) scheme using a false transient formulation. A solid and liquid interface is approxi-
mated by steps. The role of surface tension driven flow on total heat transfer is studied. Comparative
studies are carried out between conduction and convection results. The flow pattern in the molten pool is
presented through stream function plots which show the effect of laser power on the size and strength of
secondary cells. The effect of a secondary cell on the total heat transfer and pool shape is analysed under
varying laser power.

1. INTRODUCTION

LASER melting and solidification has received a lot of
attention recently due to the improved surface prop-
erties that can be achieved [1]. Due to rapid sol-
idification soon after the melting better surface prop-
erties can be obtained, especially from the point of
view of wear and corrosion resistances. Moreover, the
penetration depth, i.e. the depth of the molten pool,
is small during laser surface treatment because of the
small time of interaction. This is of great importance
from the manufacturing point of view where one
wants to retain the bulk properties of the product the
same with a thin surface of special properties. Its
potential has, however, not yet been fully utilized. The
primary reason is that the basic mechanism governing
the process has not been fully understood. Anthony
and Cline [2] did the first quantitative work and pro-
posed that the flow in the melt was created by the
surface tension gradient at the free surface. They
assumed the flow field was not coupled to the heat
transfer and studied a one-dimensional model. Hence,
they did not study the effect of the flow on heat
transfer.

Chan et al. [3] considered a two-dimensional tran-
sient model of laser melting. Movement of the heat
source was taken into consideration by coordinate
transformation. On the basis of wrong values of latent
heat of fusion, they neglected the interface energy
balance because of the low value of latent heat of
fusion. Quantitative effects of different parameters on
the surface velocity, surface temperature, pool shape
and cooling rate were presented. Chan et al.’s work

[31, however, clearly shows the effect of fluid flow on
the total heat transfer during laser melting. In the
subsequent work, Chan et al. [4] analysed a steady-
state laser melting problem with a stationary beam in
the cylindrical coordinate system. They validated their
model by comparing experimental results to that
obtained from the model. They found that scanning
velocity plays an insignificant role because of the
higher magnitude of the surface tension velocity.
Later, this fact was proved in ref. [5] while analysing
thermocapillary flow during laser melting. Chan et al.
[6] analysed laser surface alloying at different cross-
sections along the workpiece.

In all the previous studies [3, 4, 6], a detailed analy-
sis of the flow in the pool was not carried out. The
effect of the flow on the total heat transfer was the
main consideration of all those studies. In this paper,
a steady-state analysis of the laser melting problem
is presented. The changes of flow pattern with the
increasing power of the beam is shown clearly. The
role of the secondary cell on the heat transfer and,
subsequently, on the pool shape is analysed.

2. DEFINITION OF THE PROBLEM

To develop a mathematical model, the problem is
physically defined as follows. A laser beam having a
constant power distribution strikes the surface of the
material. All of the incident radiation is assumed to
be absorbed by the material. The heat absorbed
develops a molten pool. The flow is produced mainly
due to the surface tension gradient [6]. The surface
tension gradient is produced by the temperature gradi-
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d  height of the workpiece [m}

k  thermal conductivity (Wm~'K~']

Marangoni number,

(do/dT*)(gro/k)(ro/nar)

P pressure [Nm~?]

g  input heat flux [Wm™?]

R, surface tension Reynolds number,
(do/dT*)(gro/k)(ro/uv)
width of the laser beam [m]
temperature [K]

. characteristic surface tension velocity
(do/dT*)(gro/kp) (ms~']

i

u vertical velocity

v horizontal velocity

W  any independent variable

x  vertical coordinate

y horizontal coordinate.
Greek symbols

o thermal diffusivity [ms2]

£ convergence criteria

NOMENCLATURE

#  dynamic viscosity [Nm™'s ™'}

v kinematic viscosity [ms™?]

p  density [kgm™3]

6 surface tension [Nm™']

At false time step or relaxation
parameter

v stream function

Q  vorticity.

Subscripts

a ambient

¢ characteristic value

1 liquid

lig point where the interface intersects a
reference line

m  melting point

] solid

w  wall or interface.

Superscript
* dimensional value.

ent at the free surface. The surface tension gradient
acts as a shear stress at the surface itself and, thus,
induces convective flows. The problem is to determine
the flow pattern, pool shape, free surface temperature
and velocity distribution at the steady state with the
increasing power of the beam. The model is shown in
Fig. 1.

The following assumptions are made for the present
model.

(1) The heat conduction and fluid flow are pri-
marily in the x- and y-directions. Conduction and
convection in the z-direction is neglected. This
assumption is reasonable because of the symmetry of
the problem.

LASER BEAM

l \FREE SURFACE
| -
!

Ad

LQuiD

| L 1
X,

FiG. 1. Coordinate system.

(2) All properties of the material are independent
of temperature except surface tension.

(3) The surface of the melt is flat. This assumption
was justified in ref. [5].

(4) The laser beam is stationary. Though the laser
melting process is a moving heat source problem, ref.
[5] has shown that the quasi-steady-state analysis is
valid to study the flow pattern.

(5) The free surface outside the beam is adiabatic.

(6) The heat flux at the boundary represents the
net heat input to the material.

3. MATHEMATICAL FORMULATION

Using the symmetry, the present problem can be
mathematically defined by the following governing
equations and boundary conditions.

For liguid region
Energy equation
oT* or* orT*  0°T*
* * i —— . 1
Wioe TP oy* % (6,’6*2 + Qv*“) ()

Momentum equations

ou* du* 1 9p* Q*u* 0wt
RTINSk AN A R 2
Wiaer TV oy* p Ox* v <6x*2 + oy*? 2)

ov* ov* 1 op* o*v*  oh*
u*é?+v*5§;=—;5ﬁ+v(aﬁ+é;ﬁ .3
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Continuity equation
du*  ov*
e T =Y @
For solid region
Energy equation
82T+ o0°T*
FrT + 5}*—2 =0. %)

The boundary conditions are as follows :

at x* =0, )
oT*
ik k 0<y*<r,
=0; ro<Jy*<sw
ov* do
u*=0,ﬂﬁ=—5;;; 0<y* < yyq
aty* = 0, 0
ou* OT*
*=——=——= M < *Sd
v 3 o 0, 0<x
at the interface, * = v* =0and T* =
atx*=d, T*=TF;, 0<y*<w
aty* =w, =T¥, 0<x*<d. J

The initial condition is

T*=TF, 0<x*<dand0<y*<w. (7)

The solid-liquid interface is determined by the melting
point temperature and no energy balance is required
at the interface because of steady-state analysis. The
governing equations are nondimensionalized with the
following non-dimensional variables :

x* ¥ __T*—T;"

ro’ ro’ (gro/k)

u* * p*
u=UC; v=a and p=pU§'

The characteristic surface tension velocity, U,, can be
obtained from the order analysis of the free surface
force balance between the surface tension and shear
forces [5], and can be expressed as follows:

do gr,
Ue =37+ kp

Introducing the dimensionless variables and trans-
forming the momentum equations to the ‘vorticity
transport equation’ (i.e. to eliminate the pressure
gradient terms), the complete mathematical descrip-
tion of the problem is as follows.

For liquid region
Energy equation

oT 8T 1(a2T 52T>

u5;+v;3; Ma\a + a7 ®
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Vorticity transport equation
Q + n 1 2*Q + 0Q ©)
“ox TP TR \ox? T 3y?
Stream function equation
2 2
_ v, o)
Q= — ( T+ 53 3 (10)
Velocities
oy oy
u-@ and v=—an (¢8))
The boundary conditions are as follows:
atx =0, h
oT
—5—=1.O; 0<y<1.0
=0; 10<y
u=90; O<y<mw
y qu (12)
ov or 0<y<
ox oy SV S Vi
aty =0,
ou oT d
_- = = <x<—
v -3y 0; 0<x "
at the interface, u =v=0and T'= T, J

The vorticity at the free surface is determined using
boundary conditions (12) and the definition of vor-
ticity

oT
Qlemo =7 (13)
Along the line of symmetry
0Q
P =0. (14)

The interface vorticity is determined by assuming the
interface as a no-slip wall and, therefore, the interface
vorticity is determined as follows [7] :

2'//w+ 1

Q=- Aw?

135)

Since there is no flow across the system boundary, the
stream function boundary conditions are

atx=0,¢y =0;
aty =0,y =0;
at the interface, y = 0.

OSJ’SJ’ﬁq
0<x<xﬁq

(16)
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For solid region
Energy equation

8T &°T
) (17)
ox dy
The boundary conditions are as follows:
or W)
atx=0, 5';:0, yliq<y<;,;
w
atx=—, T=0; 0<y<—
o Ty
s > (18)
T d
aty =0, 5;=0; x,iq<x<-r—(-)
W
aty=—, T'=0; 0<x<- J
Fo Po
at the interface, 7= T,,.
The initial condition is
d w
T=0; 0<x<—and0<gy<—. 19)
Ty £

4. NUMERICAL DESCRIPTION

The finite-difference form of equations (9)—(11)
along with the boundary conditions, i.e. equations
(12)~(16), for the liquid region and equation (17)
along with the boundary conditions, i.e. equation
(18), are solved by the ADI method. The steady-state
problem is solved by the false transient method.

To start the solution, the pure conduction equation
has to be solved till a certain molten pool region is
created so that the momentum (i.e. vorticity trans-
port) equation can be applied. For the present study,
the vorticity transport equation is solved when there
are 30 grids in the molten region. Because of a very
high Reynolds number, a second-order upwind diff-
erencing scheme is used to evaluate the convective
terms of the energy and vorticity equations [6]. The
diffusion terms of both the energy and vorticity equa-
tions are evaluated by the central differencing scheme.

The solid-tiquid interface is approximated by steps
and it is clearly shown in Fig. 2. The interface is
tracked by the melting point temperature. Since there
is no role of latent heat of fusion in the steady-state
problem, a grid point is termed as the interface as
soon as the temperature of that grid point reaches the
melting point without any energy balance at that grid
point, i.e. across the solid—liquid interface. For the
present study (41 x41) grids are used with step sizes
of 0.1 in both the X- and Y-directions.

4.1. Selection of relaxation parameter (false time step)

The selection of the relaxation parameter is one of
the most important aspects in any steady-state
numerical problem. The relaxation parameters or
false time steps of the present problem in both the
regions are determined on the basis of the dominant
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BOUNDARY USED FOR COMPUTATION7

4 1
ACTUAL BOUNDARY
FiG. 2. Numerical approximation of the actual interface.

O e o S S

governing mechanism. In the solid region, thermal
diffusion is the mode of heat transfer and, hence,
the false time step is defined on the basis of thermal
diffusion velocity (o,/ry). On the other hand, con-
vection is the dominant mode of heat transfer in the
liquid region and the characteristic surface tension
velocity (U,) is used to define the false time step. The
false time steps in the solid and liquid are selected in
such a manner that both of them should represent the
same physical time. On this basis, the relation between
false time steps in the solid and liquid regions is

At o

— = Mal|— |

Az, “(as
The relative error (i.e. fractional change) criterion is

used to ascertain whether steady state is reached or
not. This criterion is defined as

(20)

Wmew _ Wold

_..M_W_arm — Wold £ 0

<ég;

@2n

where W is any dependent variable and ¢ is a small
quantity. For the present study the valug of ¢ is
selected as 0.005.

4.2. Selection of governing parameters

From the non-dimensional forms of the governing
equations (equations (9)—(11)), the non-dimensional
parameters, governing the present problem, are ident-
ified as follows:

R, = Surface tension Reynolds number

_do gry g
AT ko

Ma = Marangoni number

do grg ry

T4k o

T, = Non-dimensional melting point.

The results are obtained for the following three cases.
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3.0L

FiG. 3. Comparison of pool shapes with (41x41) and
(81x81) grids for R, =200000, Ma=2000.0 and

T, = 0.125.
Casel: Ma=1000.0
R, =10000.0
T, =025
Casell: Ma = 2000.0
R, =20000.0
T, = 0.125.
CaseIll: T, =0.25 (pureconduction).

For steel, different cases represent the following physi-
cal values.

CaseslandIII: ¢=27x10|Wm™?
ro = 1.0 mm.
Case II: g=>54x10* Wm™?

r= 1.0 mm.

The values of one relaxation parameter (i.e. false time
step), for the solid zone, are

Cases I and III = 0.008
Case IT = 0.004.

The number of iterations required to reach the steady-
state solution for different cases are

Case I = 835
Case I1 = 1300
Case I = 275.

The number of iterations is highest in case II because
the value of the relaxation parameter is smallest in
this case. To study the effect of the grid size on the
solution, pool shapes for case II with (41 x41) and
(81 x 81) grids are compared and shown in Fig. 3. The
grid sizes are 0.1 and 0.05 for (41 x 41) and (81 x 81)
grids, respectively. From Fig. 3 it can be seen that the
pool shapes are within reasonable accuracy.
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F1G. 4. Streamlines in the molten pool for R, = 10000.0,
Ma = 1000.0 and T, = 0.25.
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FI1G. 5. Streamlines in the molten pool for R, = 20000.0,
Ma = 2000.0 and T, = 0.125.

5. RESULTS AND DISCUSSION

The streamlines for different cases (i.e. cases I and
IT) are shown in Figs. 4 and 5. From the streamline
plots, it can be seen that there is a secondary cell at
the bottom of the molten pool. The size and strength
of this cell are larger for R, = 20000.0 than for
R, = 10000.0. Reference [5] observed the existence of
these cells during an analysis of the thermocapillary
flow in a rectangular cavity. In a rectangular cavity
secondary cells form because of the corner effect while
secondary cells exist in the molten pool due to its flat
shape. The fluid cannot take a sharp turn near the
bottom of the pool because of its flat shape which
results in the formation of secondary cells. As can be
seen from Figs. 4 and 5, the point of deviation of the
bulk flow from the interface is different for these two
cases. For case 11, the order of magnitude of velocity,
i.e. the momentum of fluid, is higher than that of case
I because of the higher power of the beam. As a result,
the bulk flow for case II deviates at a point which is
at a lower depth than that for case I and, thereby,
creates secondary cells of higher size and strength.

The isotherms for different cases (i.e. I, IT and III)
are shown in Figs. 6-8. The effect of flow on heat
transfer is clearly seen from these plots. In the presence
of recirculating flow, heat transfer takes place by both
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FiG. 6. Isotherms in the molten pool for R, = 10000.0,
Ma = 1000.0 and T, = 0.25.
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FiG. 7. Isotherms in the molten pool for R, = 20000.0,
Ma = 2000.0 and T, = 0.125.
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F1. 8. Isotherms in the molten pool for T, = 0.25 with pure
conduction.

conduction and convection. Due to the presence of
the bulk flow (i.e. primary cell), heat transfer by con-
duction is opposed by the convection near the line
of symmetry. Away from the line of symmetry, heat
transfer by convection is in the same direction as
that by conduction. As a result, total heat transfer is
enhanced along the Y-direction and decreased near
the line of symmetry because of the bulk flow. On the
other hand, secondary cells at the bottom of the melt
modify the heat transfer mechanism in the opposite

B. Basu and J. SRINIVASAN

Table 1. Steady-state melt geometry

Width

Case No. Depth Aspect ratio
1 1.72 [.14 1.50
1 2.73 1.84 1.48
1.32

I 1.48

112

way and enhance the total heat transfer near
the line of symmetry. For R, = 20000.0, this secon-
dary cell modifies the total heat transfer substanti-
ally and this can be seen from the last two
isotherms of Fig. 7. The aspect ratios (width/depth of
the molten pool) of all the cases are given in Table 1.
The aspect ratios of cases I and II are more than that
of case III which is due to pure conduction. This is
because of the convective heat transfer which makes
the pool shallower. The aspect ratios of cases T and II
are almost the same (Table 1), As Reynolds number
increases, the width of the pool increases because of
a higher contribution of convective heat transfer due
to higher orders of magnitude of bulk flow velocity
(Table 1). On the other hand, the depth of the pool,
also, increases because the secondary cell of higher
strength enhances the total heat transfer near the line
of symmetry (Table 1). As a result, both depth and
width increase as Reynolds number increases and the
ratio of width to depth (i.e. aspect ratio) is almost the
same for both the cases under the present study.

The non-dimensional free surface temperature dis-
tributions are shown in Fig. 9. The maximum tem-
perature occurs at the centre of the beam and
decreases away from the beam. The maximum surface
temperature gradient occurs near the edge of the beam
because of the sudden change in the boundary heat
transfer. The maximum temperature of case 111 is
more than that of cases I and II because of more heat
accumulation due to the absence of convective heat
transfer. The maximum temperature of case ILis lower
than that of case I because of better mixing in the
presence of flow of a higher order of magnitude.

The velocity distribution at the free surface is shown
in Fig. 10. The velocity at the centre is zero and
increases away from the centre. The velocity at the
free surface attains a maximum value at a point where
the free surface temperature gradient is maximum, i.c.
near the edge of the beam. This is because of the fact
that flow is driven by the free surface temperature
gradient which induces the surface tension gradient
there. Although the non-dimensional velocities of case
1 (i.e. R, = 10000.0) are higher than that of case Il (i.c.
R, = 20000.0), the dimensional velocities are always
higher with higher Reynolds numbers. For example,
the maximum values of maximum velocities for cases
Tand 1T are 2.0 and 3.0 m s~ ', respectively, using steel
as the material under study.

6. CONCLUSION

The convection occurring due to recirculating ther-
mocapiliary flow dominates the heat transfer process
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Fi1G. 10. Free surface velocity distribution for all cases.

during laser melting and, hence, modifies the pool
shape. A secondary cell exists at the bottom of the
molten pool and modifies the total heat transfer pro-
cess near the line of symmetry at high Reynolds num-
bers, i.e. with high powered beams. As a result, there
will be no significant change in the aspect ratio of the
molten pool when the heat flux incident on the surface
is increased.
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ETUDE NUMERIQUE D’UN PROBLEME PERMANENT DE FUSION LASER

Résumé—On simule numériquement un probléme bidimensionnel permanent de fusion laser. La for-
mulation vorticité—fonction de courant est utilisée pour résoudre les équations de quantité de mouvement
et on suggere une méthode de sélection du paramétre optimal de relaxation. Les équations aux différences
finies sont résolues par un schéma implicite de direction alternée (ADI) qui utilise une formulation
faussement transitoire. L’interface solide-liquide est approché par pas. On étudie le role de la tension
interfaciale sur le transfert thermique global. Des études comparatives sont faites entre les résultats de
conduction et de convection. La configuration d’écoulement dans le bain fondu est présentée a travers les
figures de la fonction de courant, ce qui montre I'effet de la puissance laser sur la taille et Iintensité des
cellules secondaires. L'effet d’une cellule secondaire sur le transfert thermique total et sur la forme du bain
est analysé pour une puissance laser variable.

NUMERISCHE UNTERSUCHUNG DES STATIONAREN LASER-SCHMELZ-
VERFAHRENS

Zusammenfassung—Der zweidimensionale stationdre Laser-Schmelz-Vorgang wurde numerisch simuliert.
Zur Losung der Impulsgleichungen wurde ein Ansatz mit der Wirbelstromfunktion verwendet. Eine
Methode zur Ermittlung des optimalen Relaxationsparameters wird vorgeschlagen. Die Finite-Differenzen-
Gleichungen fiir den stationéren Fall wurden mit dem impliziten Verfahren der alternierenden Richtungen
(ADI) gelost. Der Verlauf der Phasengrenze fest/fliissig wurde schrittweise berechnet. Der EinfluB der
durch Oberflichenspannung hervorgerufenen Stromung auf den gesamten Wérmetransport wurde unter-
sucht. Die Werte der Warmeiibertragung durch Wirmeleitung und Konvektion wurden verglichen. Mit
Bildern des Stromungspotentials wurden die Strémungsmuster im Schmelzbad dargestellt. Dadurch wird
die Auswirkung der Laserleistung auf die GroBe und Stirke von sekundiren Zellen gezeigt. Der Einflul
eines sekundiren Wirbels auf den Gesamtwirmeiibergang und die Form des Schmelzbades wurde unter
Verdnderung der Laserleistung untersucht.

YMCJIIEHHOE UCCNENOBAHUE CTALIMOHAPHON 3AZIAUM JIAZEPHOH IIJIABKH

Ammoramma—IIpOBEACHO HYHMCICHHOS MOJEIMPOBAHHE IBYXMEPHOH CTalMOHAPHOH 3ajJauyB Ja3epHoOH
[IABKH. YPaBHEHUs KOAMYECTBA ABHXEHASA PEIIAIOTCS C NPAMEHEHHEM COOTHOIIEHHS MEXIY 3aBHXPEH-
HOCTEIO ¥ QyHKuRe# Toka. [Ipeanoxken MeTon Bbibopa onTHMaNBHOTO MapaMeTpa penakcauny. Cranyo-
HapHble KOHEYHOPA3HOCTHBIC YPABHECHHS PEINAIOTCA € MCHOJNbL3OBAHAEM HEABHOH CXEMBI MEpeMEHHBIX
Hanpapjenvii. TIpOBOOMTCS CTYNMEHYaTas anNmPOKCHMAIMA NOBEPXHOCTH pa3fieNa MEXKIy TBEPABIM
TeAOM M XHAKOCTBIO. M3ydaeTcs BiIMSHHE BHI3BAHHOIO NOBEPXHOCTHBIM HATAXCHHEM TEYEHMs Ha
npotiecc Teronepenoca. IIpopesieH CpaBHUTENBHEIA aHAH3 Pe3yNLTATOB IO TEIUIONPOBOMHOCTH H KOH-
pekume. KapTtuna Teuenns B oGbeMe paciulaBa mpeicTaBieHa B BHAe rpadHKoB mis QyHKUMM TOKa,
OTpaXaIOIIMX BIMAHME MOIUHOCTH Jla3epa Ha Pa3Mep M MHTEHCHBHOCTH BTOPHYHBIX fueeK. AHANM3A-
pyercs BIHAHHE BTOPHYHOM Aueiiku Ha CyMMapHBI TerionepeHoc u Gopmy pacniasa.



